If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+13x-11=0
a = 12; b = 13; c = -11;
Δ = b2-4ac
Δ = 132-4·12·(-11)
Δ = 697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{697}}{2*12}=\frac{-13-\sqrt{697}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{697}}{2*12}=\frac{-13+\sqrt{697}}{24} $
| 5x/8+x/12=51/24 | | 4x-28=-8(x+2) | | 17n+55=12n | | -8v-4-17=19 | | 3(x+3)+6=30, | | Y=2x^-3x | | -6+5x=4x+4 | | 1/2(6x-3)-x=2x+1 | | 10=2y+2(y-7) | | -2k+`19=3k-1 | | -127-x=-11x+143 | | 6x+36=66 | | 29=-5u+7(u+3) | | 2(p-8)=18 | | 3+-18=4(-3-3/4t) | | 2(4r+2)=2(12r+18) | | n-4=(-1÷3)×6-3n | | 2b+4=5b+9 | | 173-u=267 | | 15y+6=3(5y+2 | | 70.23=39.95+0.32m+9.80 | | -18x−45=-12 | | 10-2(x+3)=2x | | 43=-x+295 | | 3(q-5)=2(q+5 | | 2/x+5/2x=8 | | 187-x=146 | | (3x10)x8=3x(10x8) | | 3(x+4)-2(x+5)=-4 | | n/8+1=3 | | x+6/4+x+2/3=3 | | (3x+2)-2=6 |